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SECTION 1
INTRODUCTION

In Reference 1, far field conditions for small periodic
oscillations superimposed on a subsonic flow have been derived.
They express the effect of the distant field on the portion of the
flow field that is to be treated numerically. One obtains linear
relations in which the potential and its normal derivative at all
points of the far boundary of the computed part of the flow field

appear simultaneously. We speak of global conditions since all

boundary points are involved. Approximate local far field
conditions have been derived by Bayliss, Gunzberger and Turker
(Reference 2).

The present report clarifies by means of an example some of
the questions which arise in the application of these conditions;
of particular interest are the errors introduced by the discretiza-
tions which are necessary in a numerical treatment. The example
is rather simple; it can be treated analytically. The analytical
properties will be helpful in the discussion but, since one wants
to imitate more realistic problems, they will not be used in a
numerical approach. Actually, the numerical solutions play a very
minor role. The problem has been programmed and solved for different
boundary conditions, but only to check the feasibility of the approach,

not to provide a production routine.

A comparison of the results so obtained with exact solutions
will not be carried out because it does not allow us to separate
different error sources (errors due to the discretization in the
differential equations, in the far field conditions, and in

satisfactory boundary conditions at the profile). Instead, we

shall examine how the discretizaticn affects different eigenfunctions.

In realistic problems the differential equation governing
unsteady perturbations is not identical with the one for perturbations
in a parallel subsonic flow, in particular not in the vicinity of the
profile. This does not limit the scope of the present study because

in the distant field, the latter gives an acceptable approximation.




SECTION II
SOME PRELIMINARY OBSERVATIONS

We consider the unsteady two dimensional field generated by
a plate which extends along the x axis of a Cartesian system of
coordinates x,y from x = -1 to x = +1. Along the plate the velo-
city normal to it, that is the normal derivative of the oscillating
part of the potential ¢ is prescribed. For an infinitely thin
oscillating plane the value of ¢y at its upper and lower side are,
of course, the same, but we shall allow for a more general situation.
The problem has a number of symmetries which allow one to separate
it into smaller problems; in the subproblem treated numerically here
the potential ¢ is symmetric with respect to the x axis. The
components of the perturbation velocitv then have opposite signs at
the upper and lower side of the plate. To comnlete the formulation
of the boundary value problem one must prescribe at a distance the

"far field" conditions under study in the present report.

The eguations for the distant field can ultimately be reduced

to the Helmholtz eguation

S T ¢yy +ue =0 (1)

It arises from the eguation of two dimensional acoustics

dyx * ¢yy T oYttt
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by setting

d(x,y,t) = ¢(x,y) expliut) (3)

In this formulation it is assumed that the time has been scaled

so that the velocity of sound is 1. The time for one period of
the oscillatory motion is then T = 2%/yu; this formula gives also

the wave length (because of the choice of the velocity of sound).

A~ 2~ cppn 4=
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To get some appreciation for the magnitude of ;1 we mention that
its value is 7 for a wave with a length equal to the width of the

plate (which is 2 in the present example).

If the plate is embedded in a subsonic parallel flow, one
must make several transformations in order to arrive at the
Helmholtz equation (see Ref. 1). If in such a flow the plate
oscillates with a circular frequency, v, then one obtains (after

the transformation to the Helmholtz equation)

val VL
a -u a(l—Mz)

where U is the free stream velocity, "a" is the free stream
velocity of sound, M = U/a is the free stream Mach number, and L

is some characteristic length (here the half chord of the plate).

During one period T = 2n/v a perturbation travels strictly
upstream or strictly downstream by the respective wave lengths,
via (27/v)a(l-M) and (2n/v)a(l+M).

Frequently a reduced frequency, here denoted by u', given
by

p' = v L/a {5)

is introduced. Then
o= ut 5 (6)

The freguencies v are determined by the physical situation

under investigation.

The transformation to the Helmholtz eguation generates a

wave pattern in which the wave length is the same in all directions.

For a given v one has the following expressions for the wave length

e aikitaai




. 2
Helmholtz equation 2v/u = (2n/vL)a(l1-M7)
waves travelina upstream g MY = (D /e —M2 M -1
in a parallel flow (27 afl-My=(2/.L)a(l ) (1+M)
2 -1

waves traveling downstream N — (D S _ -
in a parallel flow (2n/vp)a(l+M)=(2n/vL)a (1-M7) (1-M)

The wave length for the Helmholtz eguation is the harmonic mean
between the wave lengths for upstream and downstream traveling

waves.

The fact that after the transformation to the Helmholtz

equation the wave length is larger than for waves traveling upstream
in the original field is of practical interest. The grid points

of a finite difference net must be close enough to reproduce the
waviness of the unsteady field. After the transformation to the
Helmholtz equation a grid which is coarser than that of the

original problem is admissible. Of course, for small values of
and Mach numbers not too close to one this is less important, for
the wave lengths are large to begin with and the sclution resembles
1n essence that of the Laplace equation. But, under different
circumstances, it may be advantageous to carry out such a

transformation even though the differential equation for the vicinity

of the profile differs from the Helmholtz eguation.
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SECTION III
TRANSFORMATIONS

In a numerical approach one must provide a net in which the
discretization is carried out. One might use a rectangular net
in the physical plane. An elimination strategy for this purpose
is described in Reference 3. 1In Reference 1 a different net
obtained by a conformal mapping has been suggested. For practical
purposes the first net is probably preferable because it retains
the orientation imposed by the free stream direction. The net
of Reference 1, used here, makes it possible to study the problem
in greater detail. The general conclusions do not depend upon the
choice of the net.

The starting point is the Helmholtz equation, Eq. (1).

Let
x + iy = 2 (6)
£+ in = ¢ (7)
and
z = g()
let
g' = dg/dg. (8)

where g is an analytic function. Then one obtains

bpe ¥ by T 1M [T0 = 0 (9)

We choose specifically the familiar mapping

¢ (") = cosh (10)
Then
X = Re g = cosh ¥ cos n
{(11)
y = Im g = sinh ¢{ sin n

-




for £ = 0 one obtains y = 0 and x varies from -1 to +l1 and back
as n varies from 0 to 2n. This is the map of the plate surface.
Both, the lines n = 0 and n = 21 map into the x axis from x =1
to x = ®, the line n = 7 maps into the x axis from x = -1 to -,
The whole flow field is mapped into a strip of width 2w which

extends from £ = 0 to § = o=,

One obtains, by eliminating n

x2 y2
2. Y T <
cosh ¢ sinh™ ¢
and by eliminating §
2
X _ y -1

cos™n sin' n

—~

The lines ¢ = const and n

2

const are, respectively, ellipses and

hyperbolae with foci at x = +1 and x = -1.

| A number of formulae are listed for future use. One has
g' = sinh (z) (12)
. - *
= (sinh ¢) (sinh z)

where the star denotes the conjugate complexXx. Writing the
hyperbolic functions in terms of exponential functions and

carrying out the multiplication one finds

lg*1% = 1/2 (cosh 2£ - cos 2n) (13)

We also introduce polar coordinates r,® in the physical plane

g(r) = x + iy = r exp 10 (14)

Then

r = [g(n)] = lg(f,)g*(c)ll/z




i~ 'a i

and ultimately,

r = [1/2(cosh(2¢) + cos(2n)]1/2

For ¢ large, one has

cosh 2§ v 1/2 exp (2¢)

and therefore

r v 1/2 exp £

one observes that

exp(ib) =

x+iy

r

Hence, asymptotically for large values of {

- glz) _ (¢)
T T r glz)

exp({iB) ~ exp(in)

We note that, because of Eq. (16)

cos(no)

sin(no)

These expressions are readily evaluated by complex arithmetic.

Considering x and y as functions of ¢ and n, one obtains

Ix/ 3¢
ax/3n

dy/ 93¢

dy/an

Re (exp(ig)) "

Im(exp(ie))n

i

it

fl

Re[(g(z)/r)"]

Iml(g(z) /)"

1]

(15)

(l6)

(17)

(18)

(19)

w T g - -



Furthermore, if ¢ and n are considered as functions of x and y,

36/3x = |g Re g'
. [} -2 ]
06/0y = lg'| " Im g
(20)
In/ax = -]g'l_2 Im g'
— ’ -2 [
an/dy = |g'| " Re g
Since
log g = log r + 16
one obtains in analogy to Eg. (19)
9 log r/3 = Re(g'/qg)
5 log r/3n = -Im(g'/g)
(21)
36/9¢ = Im(g'/9g)
306/9n = Re(g'/qg)
By substituting Eg. (14) into
g' _Reg' + i Img'
g Re g + 1 Im g
one finds
g'/g = (1/r)[(Re(g') cos 6 + (Im(g'))sin 6
+ i((Im(g')cos 6 - (Re(g') sin 6)] (22)

One has, specifically




T T v T

Introducing

exp £ = u (23)

and separating the real and imaginary parts one obtains

g' _ w? - u? 4+ 2i sin 2n
g

=3 (24)
+ u + 2 cos 2n

Hence, asymptotically, for large u

Re(g'/g) =1

) (25)
Im(gyg) = 2u sin 2n
Substituting Eg. (13) into Egq. (9), one obtains
2 N .
bpg * byt (W7/2) (cosh 2¢ - cos 2n)¢ = 0 (26)

Replacing & by u, (Eg. (23)), one obtains a form that is more
convenient for asymptotic considerations and in addition gives a
suitable mesh for numerical work

-1 -2

by * U0y +uT%e +uflarTh /e - T 2)c0s2mle = 0 (27)
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SECTION IV
PARTICULAR SOLUTIONS

The far field corditions (for the Helmholtz equation), Eq. (57)

of Ref. 1, specialized to the case of plane flows is given by
Jlouy) e (x,y) = w_(x,¥)¢(x,y)Ids = 0 (28)
C

Here C denotes the far boundary of the computed part of the flow
field. The subscript n denotes the derivative normal to this
boundary, ds is the lirne element, ¢, defined in Eg. (3), 1s the
potential expressing harmonic perturbations. In the distant

field ¢ satisfies Eg. (1), in the near field, it will in general
satisfy a more complicated differential equation. The functions w
have the character of test functions, they satisfy Eq. (1) at

least in the distant and usually also in most of the near field.

In addition, we define the test functions used in the present report.
They must satisfy the far field conditions. One set is already

given in Reference 1.

cos mb
w =y = Héz)

m {(ur) {

sin mo (29)

The second set is obtained by a product hypothesis in the 7 ,n plane,

namely
w =y (£,n) = fk(i)gk(n) (30)

Introducing a separation constant Ak one then obtains

d fk Ll2
?7 + ("-\k‘+ 5" cosh (2{))fk =0 (31)
a°g 2
" Oy - 5 cOs (2n))qk =0 (32)

10
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The second of these equations (with a different normalization of
the constant uz) is the equation for Mathieu functions, the first
one is that for radial Mathieu functions. One might refer to the
literature for further developments, but for the present purposes
it is nearly as convenient to derive the necessary equations

directly and to generate the information needed by the computer.

The expressions (29) and (30) can, of course, also be used

to represent the functions ¢ in the distant field.

The periodicity conditions for ¢ carry over to the functions

Iy - One must, therefore, determine the separation constants Ak in
such a manner that
gk(O) = gk(2ﬂ)
and
dg, /dn]| = dg, /dn]| (33)
k =0 k

n=27

The operator of Eg. (32), together with the periodicity

conditions (33), is self adjoint. The eigenvalues A, are real, the

k
eigenfunctions are real and orthogonal to each other. The symmetries

of the problems suggest the following hypotheses

o

oM = alt) 2712 Z all) cos((22-2)n)
=2

91i2) _ Z aéz})( cos(22-1)n)

=1

(34)
(3) _ (3) .

9y = 2: ao,k sin(20n)

=1
qi‘” - a§4))( sin((27=1)n)

=1

11




The individual functions occurring in the right-hand sides of

Eq. (34), including the constant term in the first expression,

have the same normalization constant 7 over the interval 0 < n < 2m.

The expressions Egs. (34) are substituted into Eg. (32). Collecting
i the individual Fourier components, one obtains four separate
: systems of equat%ons for the constant aé%;, i=1,...4. We combine
éfi (for fixed values of i and k) into a vector

(1)

component is a, k). Then these problems can be
1

the constants a
gél) (whose ch

L written in the form

(1) >(1) (i) =>(i)_
M ap - Ak a, "= 0 (35)
(i)

the matrices M are given by

M(l) - D(1) + (u2/4)M(i'l)
where the D(l)'s are diagonal matrices with
pY) - (2n-2)2 , n=1,2,...
nn
(2)
Dll = 2
(2) _ _142 _
Don = {2n-1) p n=2,3,...
(3) _ 2 =
Dnn = (2n) . n=1,2;3,...
(4)
Dll =0
4 2
p{4) = (2n-1) , n=2,3,...
The matrices M(l’l) are symmetric. One has
M(l'l) - le = 21/2
12
(i, 1) = M(lrl) =1 , n = 2’3,,,, (36)

n,n+l n+l,n
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(i,1) _ (i,1) _ .
noel = Myl =1 , n=1,2,..., i =2,3,4,...

(36) continued

M
. (i,1)
all other elements of the matrices M are zero.

Let A(l) be a matrix whose kth column is given by g(i) and

. : k
let A(l) be a diagonal matrix with the kth element Aél). Then

one can write

w1 (1) _ (1), (d) _ 4

If an eigenvalue routine for matrices is available, (best a routine
for banded matrices), then numerical solutions to the problem

(Eq. (35)) are readily obtained by truncating the infinite matrix.
In the present context, only a limited number, n, of eigenvalues
and eigenvectors, aéi) is used. The infinite matrix is truncated
to an m by m matrix where m is chosen large enough so that the
coefficients aéfi (k = 1,2,...n) is smaller than an assigned small
number -, while the largest coefficient is normalized to 1, say.

In our computations, carried out with n = 5 and ¢ = lO_S it was

I’
sufficient to take m = 9 if u < 4.

The Mathieu functions a, are nearly monotonic (not more than

one minimum of the absolute value and no maxima) in the region

where lk - (;2/4) cos 2n < 0; they are oscillatory where this
guantity is larger than zero. If u2 is not small, one has a nearly
monotonic region for the first eigenvalues in the vicinity of n = 0
and n = 7. In the vicinity of n = /2 and n = 3%/2 the functions

are always oscillatory. The oscillatory regions grow as } is
increased.

For the separation constants Xéi) obtained from the
eigenvalue problem one must solve Eg. (31) for the radial Mathieu
functions. For 7 sufficiently larae these functions are always
oscillatory, because contribution (U2/2) cosh (27) makes the
coefficient of f positive. The particular solutions which
represent outgoing waves are found by studying the asymptotic

behavior for large values of 7. It is practical to replace

13
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by u, (Eag. (23)). Then one obtains from Eq. (31).

2.(1) (1) (1)
du u u 4u
(i

The form of the dominant part of the coefficient of fk suggests
a hypothesis

£ ) = £{ikgyexp (-i(u/2)u) (38)
Outgoing waves are obtained by choosing here the negative sign in
argument of the exponential function, because the argument of the

exponential function in the hypothesis (3) has the positive sign.

Then one obtains

22 (1) £ (1)
af af . X 2 ~ s
k 1 _ . k _ iy _ Tk U (i) _
5 + (u iw) - [ pITy >t —7 1 fk =0 (39)
d u 4u
In subsequent formulae the indices k and i will be omitted. A
formal development
L -n
£ =u 1/2 /. c u (40)
0

leads to the recurrence relation (obtained by collecting terms

with power u-(l/z) - (n-l)L

. _ 2 2

imec =c (A - (/2 -n)7) (u™/4)e 3 (41)
According to the hypothesis (Eg. (40)) all coefficients with
negative subscripts n are zero. The last equation is therefore
satisfied for n = 0. (This shows that the factor u Y/? in Eq. (40)
is correct.) The coefficient ¢, is taken to be 1. From there on,

0
one proceeds to larger values of n. The series is semiconvergent.

If it is terminated after a finite number of terms, then the error

can be expected to be of the order of the first neglected term.

14




This determines how many terms and which minimum value of u one
must take in order to obtain an assigned accuracy. This procedure

works well provided that the value of p is not too small.

For a value of u chosen according to this discussion one
computes f and df/du. With these initial values one then integrates
Eg. (37) in the direction toward smaller values of u. For larger
values of u, the values of f and df/du can be computed directly

from the asymptotic representation derived here. Notice that fk

and dfk/du are complex.
Eg. (37) is linear, it therefore can be reduced to a first
order differential equation. One sets
p{u) = (df/du)/f(u)
or (42)
df/du = p(u) f(u)

Hence

il

a%f/au? = (dp/au) f(u) + plu) (df/du)

It

[ (dp/du) + pz(u)]f(u)
One then obtains from Eq. (37), the following Ricatti equation

2 2
dp 2 1 poo_ A U _ ,
qutpP tgPrtlp -t =0 (43)
u 4u
Once p(u) has been found one obtains f(u) by a quadrature

u

log £ = /’ p (v) dv + const (44)
1
This procedure may be numerically advantageous especially if only

(df/du)/f(u) is needed, for the function p is likely to be smoother

than the function £. But this is merely a technicality.
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In the present problem the particular solutions in terms
of Mathieu functions are natural because a series in these particular
solutions (with coefficients determined by the boundary conditions
at the plate) converges throughout the flow field. One thus obtains
a representation of the flow field and a formulation of the far
field conditions with which other approximations can be compared.
To a large extent this observation is valid also for problems
in which the equation obtained by transforming the basic equation
differs somewhat from the Helmholtz equation. The use of a .
representation of the field in terms of Mathieu functions gk(l)(n)
need not be restricted to theoretical discussions. For practical
applications one must, of course, first provide representations
of the functions qéi) (n) and of féi) (u)/dféi}du) for the value
of u at which the far field conditions are applied. This can be
done by means of the relations derived above.

(1)

In the region r > 1 the particular solutions wk ’ (Eg. (30))
can be expressed in terms of the particular solution x(r,"),
Eq. (29). 1In principle one will evaluate a particular solution
wéi) along some curve r = const (r » 1), and then represent it
in terms of the functions X, by means of a Fourier analysis with
respect to ¢. The result has the form
DI P (45)

Certain coefficients will be zero because of symmetry properties.

The coefficients ﬁL K are constant. The values of the constants

(not needed in the future discussions) are readily obtained if

one carries out the above matching procedure along a line of u = const
(1)

in the limit u » «. Consider, for instance Vk One has, '
according to the first of Egs. (34), using the representation of k
f, given by Egs. (38) and (40) i
1
(Ly _ () (1)

K = 9y (n) fk (u) ‘
(1) =172 < (1) ) -1/2 .. I

= [al,k 2 + ,. 3, x cos ({22-2)1) }u exp{-i(u/2)u) ]

="
L 4
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We write Eq. (45) in a form where the notation for the coefficients

£ is analogous to that for the coefficient in "a" in the last

cquation
1 -
wé ) _ Bf}i H (ur) + SJ 35}& Hé?iz(ur)cos((29—2)0)
L=2

One has for u large

and

Hk (.r) expli(~/2) (k + %)](2/tur)l/2exp(—ipr)

il‘l})( - dl‘ll)( 27 V200 0y (i) /2 exp (-i (1/4)

(46)
() _ (L 1y . 1
1,x% 2,k e exp(-1i(n/2) (29 - 2 + 5]
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SECTION V
FEVALUATION OF THE FAR FIRLD CONDITIONS

Our discussions will he based on a discretization of the

differential eaguation in the u-1 system. Accordingly, one must
cxpress the far field conditions (Eq. (28)) in terms of thesc
variables. One has

:n = gradd - e, = @x cosi{n,x) + ;y sin(n,x)
and

ds = -dx sin(n,x) + dy cos(n,x)

- = - ¢+

n ds .Xdy vadx (47)
where én is the unit vector normal to the contour C; (n,x) denotes

the angle between the normal and the x-axis, and dx and dy are

the components of a line element along the curve C, which is now

aglven by an ellipse u = const. Then, from Eg. (19)
dx = -Im{(g')dn
(48)
dy = Rel(g"')dn
,px = d){) :X + ‘J.‘Y ]X
(49)
( = tr \r) + (:Y f
by Ly noly
Substitutinc Eq. (48) and (49) into Eg. (47) and using Egs. (20)
and (23), one finds that along a line u = const
$nds = ¢£dn = u¢u dan {(50)

Analogously,

w_ds = uw _dn
n u




|

If both ¢ and w are considered as functions of u and n, then

one obtains as far field conditions

21
[ (wgbu - wu(p)dn = 0 (51)
0
Substituting here the expressions wk’ Egq. (30), one obtains
2m 2m
fk(u) [ ak(n)<bu(u,n)dn - f]'((u) gk(n)¢(u,r1)dr| = 0 (52)
0 0

where the integration is to be carried out along the line u = const
which gives the contour C. The values of fk(u), fi(u) and the

functions gk(n) are considered as known.

In an alternative derivation of the last equation one would
carry out a Fourier decomposition of ¢u(u,n) and ¢(u,n) (u = const)
in terms of the system of orthogonal functions gk(n) and postulate
that each of the compcnents represent an outgoing wave. This
derivation may appear simpler, but it is applicable only if the
contour C is a line u = const while in principle the formulation

(28) 1is valid for any contour.

Further formulae are needed, if one chooses for the test

functions w in Eq. (28) the expressions Xm defined in Eg. (29)

o= w(2) ‘
Xm = Hm {ur) cos{m@)

We assume that a routine for generating Bessel functions of real
argument is available. Let Ym(z) denote Bessel functions of the

second kind. One has

H (z) =J_(2) - 1 Ym(z) (53)

19
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We note the following relations

(2) — (2) _ (2) _ (2)
H “'(2)' = dH /dz = 1/2 Hm_l(z) 1/2 Hm+l(z) (54)
(2) (2
ity (2) 4 H 2 (2) = (an/z) 2 (a) (5%)
In evaluating
27
j X O 48
0
one uses, again, Eq. (50) to express ¢n ds. The radius r and the

angle 8, which are needed in the evaluation of X, are expressed
in terms of n (and u) by Egs. (15) and (16), the trigonometric
functions of 0 ultimately by Eg. (18). It is best first to compute

z = &+ in = log u + in

and then to proceed with complex arithmetic (along the curve C

for which the evaluation is carried out, one has u = const.)

In addition, one must evaluate (dxm/du)ds. One has

d .3 2 1
aﬁ(/\m)ds' = E;(xm)r dt - =7 (Xm) = dr

With Egq. (21) one then obtains for a line u = const

d N S g' 9 q'
anlimids = (=p G)r Re(zr) + 3 lxy) Im (274 dn

Hence, after substitution of the specific expressions (29)

Jﬁ<'m)ds = ip. HAZQOS(mO)Re(%;) - m H£2)sin(m8)lm(%;{} dn (56)

An alternative, more symmetric form, is obtained by using
Fgs., (54), (55), and (22)
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Sy )ds = (u/2)[?égi(ur)[cos((m—l)“)Re(q') - sin((m-1)-)1m(q') |
-H(z)(yr)[cos((m+l)*)Re((') + osin((m+l) ) Im(ag')f d-
m+l ] S
{57)

Now the inteqgral Eq.(51), with « given by ‘q Can be evaluated. Onc
needs for this purpose Egs. (50) and (56) or (57).

A formula for the anproximate far field conditions of Bayliss,

Gunzberger and Turkel is obtained by the following considerations.

o —_

The fact that particular solutions representing outgoing waves in
terms of Mathieu functions have the asymptotic form for large

values of u

/2, . 32

1,k MEEERS!

s (uom) = gy (n)exp(=1i(u/2)u) [u”

(see Egs. (38) and (40)) imniies that ¢ 1is asymptotically given
by

¢ = exp(-itw/2w ™ hin) + 07200+ L (58)
where hl(n) is arbitrary and function hi’ i 1 are expressed in
terms of functions hj and their derivatives with subscripts j - 1.

The operation

AT ST R 4TRSS ST
Qu gt 2> C; AT 2)

applied to the first two terms in Eqg. (58) gives zero for every

value of n, Writing this operation in detail, one obtains

3 u2 3
¢uu+~’bu(a + ip) + (- e + -3 +

%? ) =0 (59)
44

o w

This equation is satisfied for any function ¢ which has the form
of the first two terms in Eg. (58). The term 32¢/3u2, which does

21
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f!!--ﬂ--—-—----ll------u-u-----ll-lq‘

not fit the concept of a boundary condition for a second order

partial differential equation is eliminated by means of the

governing Eq. (27). Then one obtains
2 . 2 2
2 . 1 3 1 3iy U v}
¢ (= + ip) - =5 4 + ¢0|—s + —5 cos 2n + F— - &5 - —=| =0
uu u2 nn 4u2 2u2 2u 2 4u4

(60)

This condition is applied along a line u = const for 0 < n < 27,

The presence of ¢nn can be taken as an indication that this
formulation, although it has local character, is an approximation

to conditions of a global nature. If one forms analogous conditions
on the basis of additional terms in Eg. (58), then one encounters

higher derivatives with respect to n.
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SECTION VI
RELATION BETWEEN DIFFERENT FAR FIELD CONDITIONS

It is convenient to symbolize the function (1), ﬁu(x), Ay,
uu(n), L(n), \u(n) and cos mn (or sin mn), which are actually
elements of a function space, by vectors. The integrations necded
in the far field conditions are then considered as scalar products,
which will be written as products of a row and a column matrix.

One of the far field conditions then appears in the form

-
4 :

[+ . (u,r) »10 t (o (um) ~]

AN
{mu,mJ =0
L | J L

Here one must substitute for w{n) all functions of either the set

.k(ﬂ) or the set xk(n). Combining symbolically these row vectors
into matrices, one then obtains
« « o >1| r \ “ r« « e e —)1‘ . q(‘
] . )y n) = 1¢U(u'n)i - P« '.:k,u(u,n)»f‘ (u, 7))y =0
Y B SR L. ... .1 L
(61)
) and
« ¢« o o »'% - s ﬂ. {'4 e o o -»'] r \ -
o T -> ’ -_— !— >§ =
e (aem) 1! ¢u(u,n)- '<xk,u(u,n) ll.(u, ) 0
« . . . »__J - M —J i»(» . . . -+ L J
(62)

In all of these equations u is constant. Because of the special

we

form of the functions wk (Ea. (30)), one can rewrite Iq. (61):




where D, and D, are diagonal matrices in which the elements D;

1 2 kk
and D2 Kk are respectively given by fk(u) and fi(u} and where
B = © g tn) - (64)

Because of the orthogonality of the functions gk(n) one finds

that the eigenvectors pk(n) of the eigenvalue problem

t 4
D, B pk(n) = A DoB pk(ﬂ) = 0 (65)

v +
are given by

pk(n) = gk(u) (66

and that the ¢igenvalues are

Pk o7)
L)
koo Dy ok Tl !
The relation between the formulations Lqg. (61) and (62} 1is
established on the basis of Eq. (4°) which 18 now written 1n the

form

: . . , th
where 1S a vector in the ordinary sense, for which the -

component 18 aiven by K Hence
e

. ST R o ) 68
'k,u(”' ) ( lk.l I,”(u, ) (68)
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where ¢ denotes a constant matrix in the usual sense for which

the element with subscripts k and ¢ is given by ﬁk,Q' One: recoanizes,
by substituting the last relation into Eq. (61), that Eqg. (62) arises
by premultiplying Eq. (61) by the matrix [f). The matrix [7] is well
behaved. Tne relative eigenvectors and eigenvalues of the two
matrices occurring in Egs. (61} and (62) are therefore the same.
After a discretization this result will hold only approximately,

the deviations from the ideal case will serve to characterize the

effect of the discretization.

In discussing the approximate far field conditions of Baylisg,
Gunzburger, and Turkel, Eq. (60), it suffices if one considers one com-

ponent of the development of . (u,n) and wu(u.h) along a linc u = const

with respect to the functions gk(n). We assume accordinagly that

d(u,n) = qk(u) gk(n)

then (69

The function qk(u) replaces the function fk(u) in Ea. (30). Then

one obtains from the approximate far field conditions Eq. (60)

2
dqa d™g 2 . 2 2
ko2 . 1 "k . 3 i B ST v
T kgt b gl sy s b ey b mycos 2 dse = e - g)ay )
an 4u 2u 4u

and by substitutinag Eg. (32)

dg A . 2 2
k2 : 3 '
EETIAEEL

N

3 . . .
+ o~ 4 I e I ol y = 0 (70)
k u 4u 2 4114

[\

The same relation is obtained if one assumes that g, has the form

¥,

L172 -3/2

)y (uy = (. + u %Y exp(=i( /2w

3]

1
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where @ and a, are arbitrary constants. Any expression of this

form satisfies the second order differential egquation

d 5 iy 3 1 iy _
(d'—u“"m*‘—z-) (3—3+2—G+—2-)qk(U)—0

In the derivation of Eq. (60), the condition has been imposed
that ¢(u,n) (here given by Eq. (69)) satisfy the partial
differential equation (27) at the value of u which gives the
curve C. This leads to Eq. (37) with fk(u) replaced by

qk(u). Eq. (70) is then obtained by eliminating from the last
expression dzqk(u)/du2 by means of Eq. (37).

The eigenfunctions pertaining to the approximate conditions
Eg. (60) are again the functionsgk(n), but the eigenvalues
% fk(u)/fi(u) are replaced by the expression obtained from Eq. (70).
[ This equation arises by assuming that the function gk(u) which
replaces fk(u) has the correct asymptotic form, and satisfies

the differential equation for f for the chosen finite value of u.

e g
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SECTION VII
DISCRETIZATION

So far the far field conditions have been formulated as 1if
the functions ¢ involved can be represented exactly, and, at
least in principle, it has been assumed that the set of test
functions to be used in the far field conditions is infinite.
Actually, the functions ¢ must be approximated by means of a
finite number of expressions and the set of test functions for

the far field conditions can only be finite.

An ideal case arises if ¢ satisfies the Helmholtz eguation
even in the computed part of the flow field. Of course, one
would then proceed analytically, but this case serves well in
comparing different formulations. If one represents the solution

by a superposition of particular solutions :k (defined in
La. (30)), the Helmholtz eaquation and the far field conditions
are satisfied. To satisfy the boundary conditions at the plate
one must use an infinite series in these particular solutions.
This series converges throughout the flow field. 1In practice, one
will truncate the series. The only error which arises here is

caused by the approximation to the boundary conditions at the

plate.

In cases of practical interest, the equation obtained by
transforming the original problem differs from the Helmholtz
cquation, particularly in the vicinity of the plate. (It is of
course assumed that at great distances the transformed equation
is very close to the Helmholtz equation). The transformation of
the flow field to a half infinite strip in the ' ,n plane may
nevertheless be practical, as the transformation provides a
suitable mesh in the physical plane. The fact that in this report
the analysis is carried out in the 7, (or rather in the u,n)
system ought to be considered as incidental; it facilitates the
integrations necessary in the formulation of the far field

conditions.
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In the u,n-plane, ¢ is periodic along lines u = const. For
a function which, in addition, is analytic along such lines, a
representation in terms of analytic periodic functions has c¢xcellent
convergence properties. (The coefficients an(sav) of a Fourier
series decrease for sufficiently large n faster than any negative
power of n.) One such representation is by means of a truncated

series in Mathieu functions

p(u,n) = qu(u) gk(n) (71)

where, so far, the coefficients q, are unknown functions of u.

If the problem is governed by the Helmholtz equation, then this
hypothesis leads back to a representation of ¢ by a superposition
of functions wk. The only errors arise because general boundary
conditions at the plate cannot be satisfied exactly by a truncated

series.

For a more general differential equation one is led to a
system of second order ordinary differential eauations for the
functions qk(u). At large distances the functions qk(u) will have
the same behavior as the functions fk(u), which is determined

by Egqg. (37). For u large,one has approximately

f. = u_l/2

K exp(-1i(u/2)u)

This means that the relative maanitude of these functions for

different values of k remains the same (unless k is very large,
then the asymptotic development is not applicable). Therefore, i
the number of functions gk(n) in the representation of ?
cannot be reduced as one proceeds from intermediate to large I
values of u. Such a reduction would be possible for the Laplace
¢quation. More functions gk(n) may be needed close to the plate

in order to express local effects of the boundary conditions.

To reduce from a certain value of u on the number i

of functions Ty

exnpressions that are to be disregarded, egual to zero. This

one will set functions gk(u) for the
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implies that at this value of u one introduces the condition a = 0
for those values of qy - The functions qk(u) resemble tgezfunctions
fk(u) and those functions are nearly monotonic, for »~ n17u /4 <« L
for larger values of u, they are oscillatory. If one imposes the
condition qk(u) = 0 for a value of u where the function fk(U) is
oscillatory, then there is a possibility that large errors are
introduced because of a resonance phenomenon. To avoid this, one

will reduce the number of functions qk(n) used for the representation

of ¢ only at values of u for which, for the value of k in qguestion,

fk is nonoscillatorxy.

If ¢ is represented at each value of u in terms of Mathieu
functions gk(n), then one must provide a representation for these
functions, obtained for instance by the procedure shown in Section
IV. This may well be a worthwhile approach. In this case, no

approximations ar: encountered in the far field conditions.

The periodicity of ¢ with respect to n is alternatively

expressed by the use 0f a truncated Fourier series

du,n) = :\ ql,(u) hk(']) (729
where
N o,-l/2 |
hO(n) = 2 ;
:
th(n) = cos (k»), hzk_l(h) = sin(kn); k=1,...2

In the hypothesis (72) a certain minimum number of functions gk(y)

are needed in order to give a sufficiently accurate representation
of ¢ for large values of u. We have alsc shown that the functions
qk(“) can be represented by a Fourier series in - . In this sensco
the hypothesis Egs. (71) and (72) are related to cach other. All
Fourier components (implicitly) present in Ea. (71) must also be
present in Eq. (72) in order to give a desired accuracy for larae !

values of u. This means that the maximum value of k occurring in

Eq. (72) must exceed that occurring in Eg. (71). The number of '




additional terms depends upon the value of j, it increases with
i,. For the detailed discussion of this report we have used the
function h defined in Eq. (72). Sometimes, however, one might
find it desirable to use different functions for hy(n). The good
convergence properties of the Fourier series hold only if the
functions to be represented are analytic along a line u = const.
If they have discontinuities (for instance in higher derivative)
or even if they are analytic and strongly peaked (that is, if in
the complex n-plane poles lie close to the real n axis) then the
convergence will be poor. For subsonic flows the governing
differential equation has analytic coefficients and ¢ will be
analytic except at the plate where the boundary conditions may
introduce singularities. For flows with an embedded supersonic
region even the coefficients of the differential egquation need
not be analytic (especially toward the end of the supersonic
region). Under these circumstances one will prefer representations
which are more suitable to reflect local properties of ¢, for
instance finite difference or finite element approaches. This
expresses itself in the choice of the functions hk(n). For the
value of u, at which the far field conditions are applied, one
deals, of course, with analytic functions. Adopting the notation
of the preceeding section, we write the expression Eg. (72) in

the form

-
-

i

[' . r : o

pu,m| = C e thy () e !Lq(u)i (73)
i . ¥
L ' ' !

where the number of functions h.(n) and of components of the
vector ﬁ(u) is finite., The expression Eg. (71) arises by replacing

in this equation hy (n) by g, (n).

Let us first study Eg. (61); in which the far fielad
conditions are expressed by means of Mathieu function. They are

written in the form of Eqg. (63).
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DlB ceeh () e q'(u)| - DB '~-h§(u)--— ﬁ(u) -~ 0

| \ . ! \ i
4 4 .o } V i

The number of eguations expressed by this formula equals the number ©f
rows in the matrices DlB and DZB' This number must be chosen eqgual

to the number of components in the vector &(u). Let this number be
given by n . We substitute into this eaquation the expression (64) for
B. Let

4 PE— . .-)*j (ol 4 4
PR I el =8 7
n, rows « qk(n) ; L' hg(n) Bl (74)
M . . L ¥ ' v

Let ﬁi and 52 be the matraices and D1 and D. truncated in the same

2
manner. Then one has
o T
b, B, Lq"(u)‘, -5, 5, |aw, =0 (75

In the preceding section we had characterized the far ficld
conditions by the relative eigenvectors and eigenvalues of the two

governing matrices (here D, B, and D, B,). Accordingly, we consider

1 71 2 71
the problem

- = -
b, 3, V, - v, D, By vV, =0 (76)
. th . 4 th . . L
where v, is the ¢ eigenvalue and V, the ¢ eiacenvector. Obviously,
> — =1
= 77
vV, =B & (77)
where 59 is the unit vector in the direction of the o £h component o
. ’ t - . .
v {i.e., the k R component of é; is given by ﬁf k). Then
= D = )
Vo = Dy, 0070 00 (/8
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This result holds whether ﬁl is an infinite or a finite matrix.
[t hk(v) = qk<w), then because of the orthogonality of the qk(h)
the matrix ﬁl is the unit matrix (provided that the functions qy(w)

e normalized) . Then

The function A(u,n) pertaining to this eigenvector is given by

' .- -

s t LI i 4
, o2 .
qk(m) - jeg = |gg(n)
4 ' Voo ( '

This is the result obtained in Eq. (66). It holds whether the matrix

Bl is truncated or not. 1In this case no error will arise in the

far field conditions.

Assume next that the functions h, (n) are the terms of a
X,
Pouricr series. Let Bl be the watrix 51 wlthout truncation. Then

sne finds in the jth row of the matrix Bl the Fourier coefficients

o f ay- The eigenfunctions are given, as before, bv the o th
cnlumrn of Bl—l. For the nontruncated matrix
-1 T
By 75

{(where T stands for transpose). This is seen as follows. The

Tatrls
A 0 '
h.(n)
- j -
¥ ¢ '

mans an element of the vector space (in which V lies) inte a

function space spanned by the individual functions %i<').

s-ecifically, it generates the functions which has the components

as cocfficients of the Fourier decomposition. On the other hand




yields the coefficients of the Fourier decomposition of p(n)
because the hj(n) are assumed to belong to an orthogonal set.

It follows from this description that

[«--- o + + £ 7T [1~'i
e h, (n) - TN U B 2 R
3 ‘ ) Do !
R T TR T
and on the other hand that
r are oo oo T B
"T ! "lr ' ,” l ‘,*
]. Loohomye o b e mL(m) P () = p(r)
i ] } ] 1 t ’ .
@ - ‘ ! v
Ly ' die oo L P
The same hclds, of course, for any other orthonormal set qk(n).
It then follows, because of Ea. (74), that

1
4
[t e e e e »l lf 4 ST . _! 4 4 5 Z
8. T8, = < h () B TR P DS :
1 1 { I . 'k ‘ k ! ; ;
l< ..... - [ 3 IS . *.!w" { .
is the identity operator. Hence, the results announced ahove f
T -1 . ]
Bi_Bl (791
¥
: .th . ) ;
We mentioned that the j row of Rl aives the components of a !
! decomposition of qj in terms of the orthogonal set h(r). According '
to Ea. (77), the eigenvector Gj is given by the jth column of
r Bl_l - BlT. This means that for nontruncated matrices ﬁ
o _ _ ?
s ) St t
b ’ h, (r) ‘V |: a (’,)! [
Yo

In the representation of the flow ficld discussed first,

*(u," ) is expressed for each valuc of u as a linear combyina‘ ion
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of Mathieu functions gp(n). The eigenvector GQ is then given

by the unit vector ¢, and the function represented by it is

immediately given byng(n). If ¢(u,n) is represented for each
>
value of u by a Fourier series, then the eigenvectors Vj has as
components the Fourier coefficients of the function g.(n). It
follows that for far field conditions in the form (63) (i.e.,
far field conditions which use Mathieu functions as test
functions) the eigenvectors 62 obtained with these two choices
of representations for ¢(u,n) represent the same function
q;('). This holds only for nontruncated matrices, for Eq. (79)
is subject to this restriction.

Tp

Eq. (79) 1s based upon the observation that B, B, is
the 1dentitv operator. For completeness, the meaning of the
operator ﬁlT B1 (where §l denotes the truncated matrix) 1is

explored in the Appendix.

In practical computations one need not evaluate the

eigenvectors v They are introduced here to describe the

e
working of the far field conditions. One has according to

Eq. (77)

-1
- - -
= 8
VQ B1 e, (80)
Let Qg be the function that is represented by 62.
o AT
~ o Vo >
g, (n) = hy(n) = By e,
4
The function ¢{(u,n) can be expressed as a superposition of these
eigenfunctions
dlu,n) = ], (u) §,(n) ;oo (um) = )& (W (n)

Then one has for the value of u which gives the curve C

f:"""""-"—“"'-""'-""-'-'-'-'"""""""""""“




q, (u)/q'; (u) = v,
where according to Eqs. (78) and (67)
(u)/fk(u) (81

For truncated matrices the functions qk(n) are in agcenoral

not identical with the functions dk(r) for nontruncated oty e,

For the practical application of the far ficld conditions
(75) one must form the matrix él' (In Eg. (B0) its inversce

is encountered.) We observed above that tho jth row of Hl

consists of the Fourier coefficients of the function ”a(')'

In ﬁl this set of coefficients is truncated.

The coefficients of a Fourier develonment of the fanct)ooe
qj(") have been used previously to provide o reprosentar ion of
these Mathieu functions. They arise by solvina the ciaenvalie
problem Eq. (35) for the infinite matrices M(i>. I pract ice
these matrices are truncated but only to the cxtoent *hat o))
Pourier coefficients of those functions a. (') which are us.
in the computations are found with a prescribod accuraoy,
Actually, a more drastic truncation is admissible in the rrosont
context. We obscerved above that the number of terms occuririn:
in the sum of Ea. (72) is larger if onc rveprescents & 100 o
Fourier development than 1f one uscs Mathieu functions nk(').
The last few ecigenvectors are inaccurate in any case boecause
of the truncation of ﬁl' This can be tolerated because the
number of functions hk(n) (of Fourier components) 1s subpesed
to be large cnough, so that in the (conceptual) decomposition
of : the last few cigenvectors occur only with very small

coefficients.

The accuracy of the formulation of the far ficld conditinns
need not exceed the accuracy with which the partial differential
equation is satisfied. 1If one approxirates the function *{(u,»)
by a truncated series of the form (71) then the resulting system
of ordinary differential equations is simply given by Eqg. (31)

with fk replaced by Iy -
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If one represents @ (u,.,) in the form (72) (in which the
ranctions b () are the terms of a Fourier sceries) then one
tarmes by oststirtution into the partial differential Eg. (27)

G u_l(il vy (ead

g

)G - uTMg = 0 (82)

. . th :
here a(u) 1s a vector valued function whose k component 1S

adiven bv the function qk(u) occurring in Eg. (72). The matrix

(i)

M is given by the matrices M defined in Eg. (36). Some

modification of the indices is needed because the Egs. (36) take

the symmetries of the problem into account.

g. (82) holds, in the first place, for the infinite svstem.

But, because we use in Eqg. (72) a Fourier series truncated to n,

terms, one must truncate also the matrix M to a size ny by n

{This was the form in which the problem has originally been

1"
vroaranmed ., )

The matrix 51 encountered in the far field conditions (when

- Uses Mathieu functions as test functions and a truncated

Fourier development for the representation of 4), contains in
its 1th row the truncated set of Fourier coefficients for the
Mathieu function g.{n). They are computed by sglvinq the

clgenvalue problemjfor the infinite matrices M(l), Egs. (36).

This has been stated before.

It is consistent with the approximation used in solving
the vartial differential equation if one approximates the rows

of the matrix B, by the components of the eigenvectors of the

(1) 1

truncated to the dimension ny by ny -

The eigenvalue problem Eq. (35) yields also the eigenvalues

matrices M

, which are used in Eg. (31) to determine fk/fé (Eq. 81) for
the wvalue of u which represents the outer boundary C. The

detailed procedure is described in conjunction with Egs. (37)
rhrough (41). If one truncates the matrices M(l) to ny by ny

matrices, then there will be an error in the later eigenvalues

>P and in the values fk/fﬁ' Such an error is admissible.
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The error encountered in this procedure can be wisaalized
i1f one computes the angle between the approximate and the exoact

cigenvectors qk(n) and the relative ¢rvror in the elaorcodies,

s
7k *- »
here combined into vectors. Consider two vectors V] and V2

The functions (r) are given by their Pourier cootticiont .,

with components a, and bi' The scalar product is defined by

[Vl, V2] = - ai bi (83)
i
The angle 1s then defined by
Vi, Vyl
cos f = e B (84)
> > 1/2 > > 1/2
3 y
Ir the present case the vector §2 which represents qk(')
has only ny components. Accordingly, one has a, = 0, i - nhy-

> . . o
The vector Vl which represent gk(n) has an infinite nunboer of
components, but the Fourier series converyes very well,  The
relative error in the eigenvalues is given by
A, = A
1 2

R

The approximate far field conditions of Bayliss, Gunzburger
and Turkel Eq. (60) arise from the assumption that ! has the form
of Eq. (58). This leads to Eg. (59). In this equation T is
eliminated by means of the original partial differential eguation.
Of course, the requirement that the partial differential cquation
be satisfied is needed only for the value of u which corresponds
to the outer boundary C. The approximation to the condition
(60) for cases where the potential is apvroximated by the
truncated Fourier series Eg. (72) is best found by retracing this

derivation. Eq. (59) then assumes the form
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S T R N I 2 U S V2 SRS V2 SR SR (85)

Frowothas eauation " oas oliminated by means of Ea., (82), which

1S 1t exnression of the partial differential equation. One

obitane

= ) - - - _ »
Lowha e c T a7 s raaT e 372y 1 u T e 2Mg=0
whiteree o st substitute the value of u for the contour C. This

15 the o of the Bavliss, Gunzburger, Turkel condition as i1t

13 usedd an the practical work,

In this cquation the truncated matrix M appcars again. For

y 1 analvsis of the offect of this boundary condition (in coniunction
with a4 revresentation of the flos field by a1 truncated Fourier
serics 1 ) we assume that d is represented by a lincar ccmbination
St rortinent ciagenvectors Vs (which in turn give representations
crothe clgenfunctions g (). Let the coefficient be qf(u).

N
Beecause of the definition of V, one has

¥ dcnotes the truncated matrix M and ’Q is the eigenvalue

which belonas to g (). Therefore from Eq. (85)

Whlere

R _ _ 4
- (2u *i.)#ulf-(“L/E)(1+u 4/2)+(3/4)u 2+(3/?)iuu +X,u “)=0 (86)

The avvlication of the Bayliss, Gunzburger, Turkel condition
thus has the following effect. For the value of u coriespondina

to the curve C one decomposes “(u,n) and :Uﬂh') in terms of

1 ;
: the approximate cigenfunctions dc(m) and then postulates that

{ the ratio of the coefficients q}(u)/qn(u) assumes the value

- cnmputed from Eq. (86). The error encountered in this procedure

is due to the deviation of the approximate eigenfunctions a, ()
‘rom the exact clgenfunctions qc(n) and the crror in the cigenvalues

¢ (u)/f" (u). This crror is characterized by
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aay 4

Vo tw/f, () -, (w/q, ()
A (87)

This expression must be evaluated for the values of % used in
the representation of the solution and for the value of u which

gives the boundary C.

Finally, we study the effect of a truncation if one uses
as test functions the expressions ¥ defined in Eg. (29). Thev are
a product of Hankel functions in r and trigonometric functions
in 3.

It was shown in Section VI that the formulation of the far
field conditions in terms of test functions originates from a
formulation in terms of test functions % by premultiplication
with a matrix (Egs. (61), (62), and (68)). We found, furthermore,
that if one equation of the system Eq. (62) is satisfied for

some value of u, it will be satisfied for any other value of u.

Nevertheless, one may have reservations about applyving
far field conditions in terms of functions vy if u is small. Along
each line u = const the function x{(u,n) is analytic, and, therefore,
a representation in terms of a Fourier series in n is possible.

The coefficient of Xj(u,n) appear in the jth row of the matrix

’i DO O
t:..xj(u,n)..g Hj(u)

L R CRE T
But the functions ¥y are singular at r = 0; one has X r’™ cos m.
Along a line u = const one has small values of r for ¢ = 7/2 and

4 = 37/2, and there the functions x have peaks, particularly
pronounced for values of u close to 1. Then a considerable
number of Fourier coefficients will be needed to give an
acceptable approximation to y. Because of the truncation of the

Fourier series to ny terms the coefficients which are not negligible

will be disregarded.
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Another argument seems to support these reservations. The
representation of a test function ¢ in terms of function x converges

only if r > 1. The smallest value of r along a line u = const is

reached at the y axis. There r

1
(u - G)' For

[ Sl

=y = sinh f =

u -1 + /2, there exist points along a line u = const where the

development of the functions ¢.

in terms of x. does not converge.

(The reason is again the behavior of the functions x..)

One may

then have doubt whether the formulation of the far field conditions
in terms of the test function Xy can replace the formulation in
terms of test functions wk. Of course, the underlyina theory

shows that the functions Xy are legitimate test functions.

Substituting the hypothesis (72) (written in the form of

Eq. (73)) into Eq. (62), one obtains, if one uses nontruncated
expressions (o, - _ T
t St
! ¥ “E i
where
| T4 ; :
B2 = !”"'Xk(u.ﬂ)*, h(\) :"-h(n)-...
# v Al
4 S
= “< s e e M h(y‘)
B3 Xk'u(\l-n) >

It follows from Eg. (68) and the definition (30) for wk that

Ea. (75) arises from the last equation by premultiplication with
the matrix |¢]. We had found that the jth eigenvector of the
matrix DIB relative to the matrix DZB is given by a vector whose
components are the coefficients of the development of g. with
respect to the system of functions hj' and that the jth eigen-~

! value is given by fj(u)/fj(u). The eigenvalues an?leigenvectors
’ remain unchanged by the premultiplication by [(B8)] ~. These are,

{ theretore, also the eigenvalues and eigenvectors of the matrix B

2

: relative to B3. Using the notation of Eg. (35) (but without the
superscript i, which is introduced to distinguish between cases

of different symmetries), one, therefore, has
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R fk'(u) R
D,B.V, - =— .~ D, B, V, =0

%
1717k fk(U) 2771 'k

and, consequently, also

N fk'(u) N
B, V., =~ =—— B, V., =0

2 'k fk(u) 3 'k

We assert that for the first few eigenvectors this couatior s

rather well satisfied, even if the matrices B, and B, and oo
>
-»
vectors Vk are truncated. This assertion is bascd on the Tact

that the truncation of the first few cigenvectors changes s
elgenvectors only by a very small amount, because tho comprrent s
lost by the truncation are close to zero. The truncation of i

and B3 to a finite number ny of rows means simply, thaet one

considers only the first n, equaticns, rather than a1l of ther.

1

The truncation to a finite number ny of columns mialit yqaar

more serious because the elements that are omitted e ot
small. However, in the original infinite matris they arc
multiplied by the components of the eiaenvector which, are wrill,
and which are now eliminated because of the truncation.

Incidentally, the elgenvectors Ok with the largest olaoenv!e:

will satisfy the truncated equations only poorly, becanse then
the components lost by truncation are laroce. We ompliasized siaoe

that the numboer n which determines the size of the matrix, rost

l !
be laraer than the number of eigenfunctions which ave imprortant

to represent the solution because n, represents the functions

1
gk(m), which arc¢ important for the solution with sufficicnt

accuracy. In other words, for n ~ n,, the components V.

1 k,u
with n > ny of the vector ay must be negligible for thosce
vectors Gk which are important in the solution !. We¢, therefore,
expect that a truncation of the matrices B2 and B,y is permissible

even at fairly small values of u. Hewever, it should bo
understood, that because of the pecaks which occur in the functior
¢(u,”) for u close to 1, it is mandatory that the integrations
nceded in the determination of the matrix elements of B, and B,

2 3
be carried out with sufficient precision.
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To determine quantitatively to what extent these observations

are correct, one forms the cigenvalues and eigenvectors of the

Cruncated Matrix, B, relative to BB' The elements of the matrices

e complox because the functions . are complex. For a comparison

the elgenvectors, one uses the llermitian scalar pnroduct. If

ay bl
17 A Y2 T b
p i
then,
5 5 - - *
[\l, v2) . ajbi {89)
i
whore the asterisk Jdenotes the conjugate complex. Then we set
> >
LV, v,1
cos o= s 11752 ‘:-*‘——:‘775 (90)
[+ a0 shown that » = 0 only if V1 = const V2. For the relative
“yeeroobn o rhe cigenvalues, we form
; A “‘fAk»* {
k f !
= ko (91) :
! k g
| 5
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SECTION VIIT
NUMERICAL RESULTS

In this section results which are of interest for practical

work are collected.

Figure 1 shows a number of curves u = const. They can be
considered as ideal boundaries, for they take the fact into
account that the profile (which is the inner boundary) lies at
or close to the x axis. After the transformation of the flow
field into a strip of the 7,r plane one obtains a particular.iy
simple representation of the potential which holds throughout the
flow field and displays clearlv the dominant effects at large
values of u (or £). This holds for the underlying steady flow
field, as well as for superimposed harmonic perturbations.
Deviations from these boundaries which may be desirable because
of practical considerations are admissible. 1In fact, the
far field conditions studied here hold for rather arbitrarv
boundaries. Which of these boundaries one chooses depends uporn
the character of the partial differential ecuation. 1In deriving
the far field conditions the assumption is made, that in the
field outside of this boundarv one deals, after the necessarv

transformations have been carried out, with the Helmholtz equation.

Part of the transformations which lead to the Helmholtz
equation is a Prandtl-Glauert transformation in the physical
plane. The ellipses in the phvsical plane which bv this trans-
formation are mapped into the curve u = 5 are shown for different

Mach numbers in Fiqure 2.

The constant .1 which appears in the Helmheoltz equation
depends upon the reduced frequency v' = 'L/u. The curves of
Figure 3 show .. versus the Mach number for different values of

w'. This graph allows one to determine the range of values

of ©. which is of rractical importance.

It was mrrt oned that an lterative solution of the Helmholtz

equation 1s pos=1ile (but perhaps not practical) up to a frequency




for which a solution with the homogeneous boundary condition
:y = 0 at the plate ¢ = 0 at the far boundary exists. Figure 4
shows the pertinent values of 1/ versus u. (The frequency
limitation becomes more stringent as the value of u for the outer

boundary 1s increased.)

The remaining data refer to the far field conditions directly.

Let us first repeat the leading ideas. The far field conditions
are represented by an infinite system of linear equations. Two
different torms of this system have been considered, namely the
representation of the far field conditions in terms of products

of ordinary and radial Mathieu functions in the n, { system, and
the representation in terms of products of Hankel functions of r
and trigonometric functions of 6. These two representations are
cquivalent to each other. In numerical work only a finite number
of equations of these systems can be used. The equations retained
are, of course, individually correct; the approximation lies in
the fact that only a limited number of these conditions are satis-
fied. The tar fiecld conditions do not introduce errors, but they

w1l) admit certain errors.

The partial differential equation can be reduced to an in-
finite svstem of ordinary differential equations. Different forms
of the system may arise if different representations are chosen.

we have studied a representation in terms of Mathieu functions of

and radial Mathieu functions of % alternatively in terms of a

development 1n trigonometric functions with respect to n with
coefficients that depend upon u. Here errors arise by the trunca-
tion ¢! the system. We have studied how the truncation of the

svstem representing the partial differential equation interacts
wlth the truncation of the system which gives the far field

conditions.

The representation of the flow field in terms of Mathieu
functions converqges for the Helmholtz equat.on throughout the
f1celd.  The only cffect of the truncation of the system is seen

1n the boundary conditions at the plate which in general are
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satisfied only approximately. The representation in terms of
Mathieu function clearly expresses the directional character

of the radiation (provided that the inner boundary 15 agiven by i
slit along the x axis). On account of these observations this o=
presentation of the flow field can be rcgarded as best from o
theoretical point of view. TIf one uses this representation in

a practical computation then the flow field at a distance can be
approximated with a minimum number of terms. 1{ one applics to
such a representation a formulation of the far field conditions

in terms of Mathieu function, then the far field conditions are

perfectly satisfied.

For a procedure of this kind one needs, of coursc, a repro-

sentation of the Mathieu functions. Tablc 1 glves for .. = 0.5,
.= 2.0 and ¢y = 3.5, the Fourier coefficient of the develcpment
of gél)(ﬂ) defined in Ea. (34), for the five lowest eigenvalues,
Let us consider the coefficients af,k as elements of a matrix,
then one has for p = 0 only terms in the main diagonal (for one
deals with the Laplace equation). As . increases, thce important
terms are found in the vicinity of the main diagonal. ‘The

"spreading out" of the Fourier coefficients does not incrcase as
one proceeds to Mathieu functions with larger eigenvalucs. The
presence of off-diagonal terms shows the directional effcct of
the radiation. It is present even for the lowest ciacnvalue,
but the effecc¢ is pronounced only for larger values of .. (For
the values of ;. considered, it is fairly weak.) The ecigenvaluces
are shown in Tablc 1 underneath in an extra row. They must hke

used to compute the values of fk(u)/fk(u).

The counterpart to a representation of the flow field and of
the far field conditions in terms of Mathieu functions is a for-
mulation in the physical plane in terms of Hankel functions of
the radius r and trigonometric functions of the anale . Such a
representation would be practical, if the inner boundary 1s gilven
by a circle. If the inner boundary is a plate, it introduces an

undesirable singularity at the origin. For a combination of a
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a representation of the tlow ficeld i1n terms of trigonometric
tunctions of ¢ (this is the 1mportant part) and ot the far field
conditions In terms of Hankel trigonometric functions, the far

tield conditions would be pertectly satisfied.

We return to the formuiation of the problem in the u, n
plane and consider the representation of the flow field in terms
of a development of ! in terms of a truncated Fouriler series 1in

with coefficients that depend upon u. Such a representation
can express a solution in terms of Mathieu function which we
consider as optimal only approximately. This fact is reflected
in the expressions for the flow field that are compatiple with the
far field conditions. In the above analysis we have adopted the

following characterization of the far field conditions. The

functions ! and Ty are represented as linear combinations of the
relative eilgenfunctions of the matrices Bl and BZ’ the ratio of
the coefficients of corresponding terms in the linear combina-
tions tor : and U 1s then given by the relative elgenvalues.

For the nontruncated system (in any representation) the eigen-
functions are Mathieu functions of @ the relative eigenvalues

are aiven by the ratio f(u)/f'(u) obtained from the radial Mathieu

tunctions. Table 2 refers to a representation of the flow field
in terms of triyonometric functions in r while the far field con-
ditions are expressed by means of Mathieu functions. (We have

restricted ourselves to solutions which are symmetric with respect
to the x and the y axis and then restricted ourselves to the first
five terms, the last term represents eight cosine waves over the
whole contour, u = const.). While the Fourier expansion of the
Mathieu function is obtained by the eigenvectors or an infinite
matrix one now deals with the eigenvectors of the same matrix
truncated to the size given by the number of terms in the flow
fi1eld. The error in the functions admitted arises because the

eigenvectors and eigenvalues are not the same in the two cases.
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Table 2 gives for the y = 0.5, ¢ = 2.0 and ;+ = 3.%, the
angle between the exact and the approximate eigenvectors and the
discrepancy in the eigenvalues. One cannot cxpect perfect anroc-
ment for later eigenfunctions, because the truncation of the
Fourier series suppresses Fourier terms which are important in
the exact eigenfunctions. The table shows that the first few
eigenvectors and eigenvalues are indeed very close to the exact
values. The errors increase with p. The eigenvalues found hcre
are needed in order to determine from tg. (37) the ratio
fk/(u)/fk'(u) for the value of u chosen for the outer bounuary.
It would be equally justified if one computes the values o!

fk(u)/fk'(u) for the infinite matrices. Then no error in the

eilgenvalues would be encountered.

If one uses the same representation for the flow field nao
expresses the far field conditions bv a truncated system of hanke!
functions in r and trigonometric functions Iin * onc will obtarrn
slightly different results, because of the difforence in the far
field conditions. Table 3 shows for different values of . and
of u the angle of corresponding eigenvectors for the truncatced
and nontruncated matrices B2 and B, and the ervroy in thoe ciaen-

3
values. In this case the evaluation of the maetriy oleorents is

critical. The matrix elements are inteurals over periodico analvtic
functions of n. In this case the trapezoidal rule ailves excellont
results, but the inteqrands arc rather peaked tor small valucs

of u and therefore the integration interval must be chosen snall
enough. Tables 3 have been computed for an interval! of Inteora-
tion m/32 but actually for the values of u considercd the results
are the same if one uses the interval /16, Serious discrorarcic:

arise however fo an interval /8. The chortest wave lernith

in the representation of - by a Fourier series in o tuvanc:b.o.u
5 terms is /4. An interval */8 would give just 2 joanto 1o
full wave. For small valucs of u the peakednoss o b s

i1s increased because of the character of the Hankel o
then smaller integration intervals will probably bo nocoseary.

Howewver, u = 4 is probably small enough for all practical
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purposes (see Fig. 1). The deviations from the ideal case are

significant only for the highest eigenvalue.

PO,

Table 4 shows for 1= 3.5 the angle between the eigenvec-
tors for a flow field represented by means of trigonometric func-
tions in u with the far field conditions expressed either by
Mathieu functions (ordinary and radial) or by Hankel functions
in r and trigonometric functions in 0. The angles are extremely
small; for smaller values of p, they are even smaller). This
shows that the deviation of the eigenvectors from their ideal
values shown in Tables 2 and 3 is primarily due to the discreti-
zation < f the partial differential equation and not to the form
of the far field conditions.

The «unproximate far field conditions of Bayliss Gunzburger
and Turkel are mainly of interest if one represents the flow field
in terms of a truncated Fourier development. We found that the
cigenfunction decomposition which one finds for these boundary
conditions is the same as if one imposes the far field conditions
i the torw of a truncated system of Mathieu functions and these
crrors are already shown in Table 2. The main error occurs be-~
cause of the falsification of the ratio fk(u)/fk‘(u). Table 5
stiows this error for Jdifferent eigenfunctions, different values of

and different values of u. As c¢xpected the error is small for
sufriciently large u and .. Assume for instance that errors in

the fourth and fifth eigenvectors are unessential, because their

contribution to the solution is small and that a falsification

ot f/f' for the third eigenvector by .05 is admissible, then
boundary conditions cannot be used for it = .5 and u as large as
L., they can be applied ftor ©» = 2 down to u = 5 and for ¢ = 3.5
down to ou o= 3,
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SECTION IX
GENERAL OBSERVATIONS

One will ask to what extent the results of the prescnt

analysis can be carried over to more realistic problems.

The transformations which in the present case lead to the
Helmholtz equation can be useful for higher values of ;, becausc

it reduces the waviness due to waves that travel upstream.

The choice of the boundary of the computed flow field as «
line u = const arises because of the shape of the inner boundary
({here the plate). It can be expected to be advantageous for all
two-dimensional airfoil problems, but some modifications are

admissible.

The far field (especially its directional characteristics)
is best represented in terms of Mathieu functions. This is a

consequence of the shape of the inner boundary.

The idea ot representing ¢ in terms of Mathieu functions
throughout the flow field requires, of course, that onc emplovs
coordinates (or a mesh) given by the u, n-system. The idea of
conformal mapping has been used even in the transonic case, there-
fore, a precedent to this procedure exists. The use of a Mathieu
function development (as well as Fourier series development in r)
may offer difficulties in the vicinity of the air foil, wherc the
function ¢ may be rather peaked (because the character of the
boundary conditions, and also because of the discontinuitiecs which

may be encountered in a transonic flow field).

The representatives of far field conditions in terms of
Mathieu functions (even if the boundary is not exactly a linc
u = const)is quite feasible (it gives best accuracy with a

minimum number of terms).

The representatior of the flow field in terms of a Fourier

development in - requires a few more terms than a representation
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in terms of Mathieu functions, if one wants to capture the direc-
tional characteristics of the far field equally well. We men-
tioned above that in the representations of the field close to
the profile both forms have the same limitations. One expects
t..at other representations of the flow field will have the same
requirements for the representation of the distant field as a
Fourier representation. They may have advantages in the vicinity

of the profile.

Errors in satisfying at the far field conditions originate
mainly by the truncation needed in the partial differential
equation. Whether one represents the far field conditions by
means of Mathieu functions or by Hankel functions in r and tri-
gqonometric functions 9 has practically no effect, if the outer
cdge of the computed parts of the profile is given by a line
u 4.

The approximate far field conditions of Bayliss, Gunzburger,

and Turkel can be applied only if y and u are sufficiently large.
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APPENDIX

According to Eq. (71)

ood]
—
[
>
—
A
Q
~
=
v
=
~

<- n -

Let Sh and Sg the function subspaces spanned respectively by the

function hj(n), and g, (n), j = l...n;, k = 1...rn;. The matrix

v

maps a point of the nl—dimensional V space 1into an element of the

subspace S The matrix

h
[l SH S ] —yj. -4 4 fﬂ
[+ hy (n) - ’ °hj(n) "
<~ . . . y L& “ (]

is the identity mapping in the nl—dimensional v space. The matrix

rt ! e R
. ohk(n) « o . ; L(; « -h‘(n) « & e
i v i « J .

gives the orthogonal projection of a general element

L of the function space into the space S . Using Eq. (79) one
3 readily demonstrates that it has the property of a projecction
operator
p? = p

Corresponding results hold for the set of orthonormal functions

gk(n). Now we consider the sequence of mappings given by
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projects this element into the subspace Sq.

sroeraltinlication by

. t t - -
bo() Lo ho(n) -

" | (rn) ,

e v t L“’ -

1 nrojection from S, into S

onerates the Pourier coefficients.,

Bl The projections occurrinag here are

bt ey, cnly b he subsraces S

]
orthogonal B

and S
a

are

h

the

b The premultiplication by

They form an element of the

B will be

sanmne.

|
‘ S S A N A B R
ri‘( ;: - -y ‘l.. * s » - » o o o . o 0 ;
BBy h. (n) J’.. gk(n) : qk(n) \ l : hj(n) : v
1 . . . o> M ' ! < . . = o v [ +
- ¢ e . '>“!’? 4 tT Fe o o e 7 4 4 *
' : - .‘('. -
- = |- hj(n) g :--hj(n)-':{ [ hj(n) *J ;:"gk(n)- :
R T Il Plle e e L } i
T« . . . [ '1 4 11
: »
N gk(”) i :..hj(”)..:, V
G e e e oy ' v
ne starts, of course, on the right
r1 4 1
L . .
« o « h.(1 . . o \V
: 3 () :
rives an element ot the subspace Sh' The premultiplication by
- i A ~ e . e e »)"
. .
.o qk . . : L< gk(n) )J
: R ;_j < « e o >
The subseguent
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LEGENDA TO FIGURES

Curves u = const in the x,y plane after a Prandtl-
Glauert Coordinate Distortion has been carried out.

Lines u = 5 in the x,y plane for different Mach
numbers, if the Prandtl-Glauert Coordinate Distortion
is not carried out. Such curves constitute ideal
outer boundaries for a computed flow field.

Values of 1 for different reduced frequencies u' as
function of the Mach number.

Values of u for which, at a given value (1/u) an
iterative procedure will theoretically converge (the
admissible region has been shaded). It is assumed

that in the iterative procedure the values of ¢ at

the outer boundary will be recomputed in each iteration
step and then kept fixed during the flow field
computation. The theoretical limit arises for a

chosen value of u at the lowest frequency u for which

a standing wave flow with ¢ = 0 at the outer boundary
and © = 2 at the inner boundary can arise.
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Table

Table
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Table 4

Table
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LEGENDA TO TARLES

Fourier Coefficioents of rive Mathicon functicrns wil b
are osvmmetric to the s oand v o AMes ana o correspon e
tlgenvalues.,

A characterization of the P'ar Field lrrors for a
Flow Field expressed by Trigonometric Functions in
and Far Field Conditions formulatcd by means of

Mathiceu Functions.

The table shows the angle between the relative
cigenvector of the two matrices which appear in the
far ficld conditions computed once for a perfect
representation of the flow field and a second timeo

for a Fourier scrics truncated to five terms. In
priactice thesc ecigenvectors are computed from the
matrix which give a Fouricr recpresentation for

Mathieu functions. The infinite matrix has been approx
mated by a nine by nine matrix, the approximate elaen-
vectors arise from o matrix truncated to five by five.
Also ugiven are the relative errors in the eigenvalues
for these matrices. These eigenvalues serve to deter-
nine the value of f(u)/f'{u) from bEg. {(35). The valucs

f{u) /f'(u) are the ecigenvalues which appear in the charac-

terization of the far field conditions.

A Characterization of the Far Field Errors for a Flow
Ficld expressed by Trigonometric Functions in - and
Far Field Conditions given by Hankel Functiens in the
Radius and Trigonometric Functions in the Aangle in the
Physical Plane.

The table shows the angle betwcen the relative cigon-
vectors of the two matrices which appear in the far
field conditions computed once for the perfect
representation of the flow and a second time if the
Fourier scries is truncated to five terms. The error
1n the eigenvalues refers to the matrix which appears
in the far field conditions.

Angle betwecn the Relative Eigenvalues between the

Two Matrices which appear in the Far Field Conditions
for a Flow Field representcd by a Truncated Scries in
Trigonometric Functions in r. The far field conditions
are cxpressed once in terms of Mathieu functions and

a second time in terms of Hankel functions in the
radius and trigonometric functions in the angle.

Relative Frror in the Eigenvalues for the conditions

of Bayliss, Gungburger and Turkel, for a Flow I'ield
Represented by Trigonometric Functions in . The DUrror
in the Figenfunctions is the Same as in Figure 2.
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